EE 330 Lecture 39

Digital Circuits

Sizing of Devices for Logic Circuits (preliminary)
Ratio Logic
Other MOS Logic Families
Propagation Delay – basic characterization

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27

Exam 2 Friday October 25

Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00

PM

Review from last lecture
Inverter Transfer Characteristics of Inverter Pair for THIS Logic Family

Device sizing does not affect V_H and V_I !!!

Review from last lecture

Transfer characteristics of the static CMOS inverter

(Neglect λ effects)

From Case 3 analysis:

$$V_{_{IN}} = \frac{\left(V_{_{Tn}}\right) + \left(V_{_{DD}} + V_{_{Tp}}\right) \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}{1 + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}} \frac{L_{_{1}}}{L_{_{2}}}}}$$

Sizing of the Basic CMOS Inverter

Most logic families require using the device sizing variables to determine acceptable V_H and V_L values

The characteristic that device sizes do not need to be used to establish V_H and V_L logic levels is a major advantage of this type of logic !!

How should M_1 and M_2 be sized?

How many degrees of freedom are there in the design of the inverter?

How should M₁ and M₂ be sized?

How many degrees of freedom are there in the design of the inverter?

$$\{ W_1, W_2, L_1, L_2 \}$$

4 degrees of freedom

But in basic device model and in \underline{most} performance metrics, W_1/L_1 and W_2/L_2 appear as ratios

 $\{ W_1/L_1, W_2/L_2 \}$

effectively 2 degrees of freedom

How should M₁ and M₂ be sized?

$$\{W_1, W_2, L_1, L_2\}$$
 4 degrees of freedom Usually pick $L_1 = L_2 = L_{min}$

That leaves

 $\{ W_1, W_2 \}$

effectively 2 degrees of freedom

How are W₁ and W₂ chosen?

Depends upon what performance parameters are most important for a given application!

How should M₁ and M₂ be sized?

Pick L₁=L₂=L_{min}

One popular sizing strategy:

- Pick $W_1=W_{MIN}$ to minimize area of M_1
- 2. Pick W_2 to set trip-point at $V_{DD}/2$

$$V_{\text{OUT}} = V_{\text{IN}} = V_{\text{TRIP}} = \frac{\left(V_{\text{Tn}}\right) + \left(V_{\text{DD}} + V_{\text{Tp}}\right) \sqrt{\frac{\mu_{\text{p}}}{\mu_{\text{n}}} \frac{W_{\text{2}}}{W_{\text{1}}}}}{\sqrt{\frac{\mu_{\text{p}}}{\mu_{\text{n}}} \frac{W_{\text{2}}}{W_{\text{1}}}}}$$

$$\frac{V_{_{DD}}}{2} = \frac{\left(V_{_{Tn}}\right) + \left(V_{_{DD}} - V_{_{Tn}}\right) \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}}}}{1 + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}}}}$$

How should M₁ and M₂ be sized?

One popular sizing strategy:

- Pick W₁=W_{MIN} to minimize area of M₁
- Pick W₂ to set trip-point at V_{DD}/2

Observe Case 3 provides expression for V_{TRIP}

(solution continued)

$$\frac{V_{_{DD}}}{2} = \frac{\left(V_{_{Tn}}\right) + \left(V_{_{DD}} \text{-} V_{_{Tn}}\right) \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}}}}{1 + \sqrt{\frac{\mu_{_{p}}}{\mu_{_{n}}} \frac{W_{_{2}}}{W_{_{1}}}}}$$

solving for $\sqrt{\frac{\mu_p}{\mu}\frac{W_2}{W}}$ we obtain

$$\sqrt{\frac{\mu_{_{D}}}{\mu_{_{n}}}} \frac{W_{_{2}}}{W_{_{1}}} = \frac{V_{_{Tn}} - \frac{V_{_{DD}}}{2}}{-\frac{V_{_{DD}}}{2} + V_{_{Tn}}} = 1$$
This is independent of V_{Tn} and $V_{DD}!$

thus

$$\frac{W_2}{W_1} = \frac{\mu_n}{\mu_p} \qquad \Longrightarrow W_2 = \frac{\mu_n}{\mu_p} W_{MIN} \simeq 3W_{MIN}$$

How should M₁ and M₂ be sized?

One popular sizing strategy:

- 1. Pick $W_1=W_{MIN}$ to minimize area of M_1
- 2. Pick W_2 to set trip-point at $V_{DD}/2$

Observe Case 3 provides expression for V_{TRIP}

Summary:
$$V_{TRIP} = \frac{V_{DD}}{2}$$
 sizing strategy

$$L_1=L_2=L_{min}$$

$$W_1 = W_{MIN}$$

$$W_2 = \frac{\mu_n}{\mu_n} W_{MIN} \simeq 3W_{MIN}$$

(dependent upon assumption $V_{Tp} = -V_{Tn}$)

Other sizing strategies will be discussed later!

Extension of Basic CMOS Inverter to Multiple-Input Gates

Α	В	Υ
0	0	1
0	~	0
1	0	0
1	1	0

Truth Table

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate

 $V_{H}=V_{DD}$ and $V_{L}=0$ (inherited from inverter analysis)

analysis not shown here but straightforward and consistent with claim that performance of gates in logic family determined by those of basic inverter

Extension of Basic CMOS Inverter to Multiple-Input Gates

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table

Performs as a 2-input NAND Gate

Can be easily extended to an n-input NAND Gate

B - Y

 $V_H = V_{DD}$ and $V_L = 0$ (inherited from inverter analysis)

Static CMOS Logic Family

- Observe PUN is p-channel, PDN is n-channel
- Claim: If PUN comprised of p-channel, PDN comprised of n-channels and one and only one is conducting, then $V_H = V_{DD}$ and $V_L = 0$
- inherited from inverter analysis

Static CMOS Logic Family

n-channel PDN and p-channel PUN $V_H=V_{DD}$, $V_L=0V$ (same as for inverter!)

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

done partial

General Logic Family

Compound Gate in CMOS Process

p-channel PUN n-channel PDN $V_H=V_{DD},\ V_L=0V$ (same as for inverter!)

Arbitrary PUN and PDN

(Arbitrary PUN and PDN)

These are termed "ratio logic" gates

NMOS example

NMOS example

VTH	1
W1/L1	4
W2/L2	1
VDD	5


```
V_H=4V
V_L=0.55V
V_{TRIP}=2V
```


- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V_{OUT} is low (will sl
- Very economical process

- Termed "ratio logic" (because logic values dependent on device W/L ratios USE UP DOF!)
- May not work for some device sizes
- Compact layout (no wells!)

- Can use very low cost process
- Available to use in standard CMOS process

 Multiple-input gates require single transistor for each additional input

Still useful if many inputs are required
 (will be shown that static power does not increase with k)

k-input NAND

- High and low swings are reduced
- Response time is slow on LH output transitions
- Static Power Dissipation Large when V_{OUT} is low
- Multiple-input gates require single transistor for each additional input
- Termed "ratio" logic
- Available to use in standard CMOS process

Depletion

Load NMOS

Low swing is degraded

- Better than Enhancement Load NMOS
- Termed "ratio" logic
- Compact layout (no wells!)
- Slow on L-H output transitions (but not as slow as previous ic)
- Dominant MOS logic until about 1985
- Depletion device not available in most processes today

- Device sizing critical for ever basic operation
- Shallow slope at V_{TRIP}

basic operation (DOF)Shallow slope at V_{TRIP}

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
 - Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

done partial

Static Power Dissipation in Static CMOS Family

When V_{IN} is Low and V_{OUT} is High, M_1 is off and $I_{D1}=0$

When V_{IN} is High and V_{OUT} is Low, M_2 is off and $I_{D2}=0$

Thus, P_{STATIC}=0

This is a key property of the static CMOS Logic Family → the major reason Static CMOS Logic is so dominant

It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of p-channel devices, the PDN is comprised of n-channel devices and they are never both driven into the conducting states at the same time

Static Power Dissipation in Ratio Logic Families

Example:

Assume $V_{DD}=5V$ $V_{Tn}=1V$, $\mu C_{OX}=10^{-4}A/V^2$, $W_1/L_1=1$ and M_2 sized so that V_1 is close to V_{Tn}

Observe:

$$V_H = V_{DD} - V_{Tn}$$

If
$$V_{IN}=V_H$$
, $V_{OUT}=V_L$ so

$$I_{D1} = \frac{\mu C_{OX} W_1}{L_1} \left(V_{GS1} - V_{Tn} - \frac{V_{DS1}}{2} \right) V_{DS1}$$

$$I_{D1} = 10^{-4} \left(5 - 1 - 1 - \frac{1}{2} \right) \cdot 1 = 0.25 \text{mA}$$

$$P_1 = (5V)(0.25mA) = 1.25mW$$

Static Power Dissipation in Ratio Logic Families

Example:

Assume V_{DD} =5V V_{T} =1V, μC_{OX} =10⁻⁴A/V², W_{1}/L_{1} =1 and M_{2} sized so that V_{L} is close to V_{Tn}

 $P_L = (5V)(0.25mA) = 1.25mW$

If a circuit has 100,000 gates and half of them are in the $V_{OUT}=V_L$ state, the static power dissipation will be

Static Power Dissipation in Ratio Logic Families

Example:

Assume V_{DD} =5V V_{T} =1V, μC_{OX} =10⁻⁴A/V², W_{1}/L_{1} =1 and M_{2} sized so that V_{1} is close to V_{Tn}

$$P_L = (5V)(0.25mA) = 1.25mW$$

If a circuit has 100,000 gates and half of them are in the $V_{OUT}=V_L$ state, the static power dissipation will be

$$P_{STATIC} = \frac{1}{2}10^5 \bullet 1.25 mW = 62.5W$$

This power dissipation is way too high and would be even larger in circuits with 100 million or more gates – the level of integration common in SoC circuits today

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
 - Sizing of Gates
 - The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

done partial

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Propagation Delay in Static CMOS Family

(Review from earlier discussions)

Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

Propagation Delay in Static CMOS Family

$$\boldsymbol{I}_{\text{D}} \cong \frac{\mu \boldsymbol{C}_{\text{OX}} \boldsymbol{W}}{L} \! \left(\boldsymbol{V}_{\text{GS}} - \boldsymbol{V}_{\text{T}} - \frac{\boldsymbol{V}_{\text{DS}}}{2} \right) \! \boldsymbol{V}_{\text{DS}} \cong \frac{\mu \boldsymbol{C}_{\text{OX}} \boldsymbol{W}}{L} \! \left(\boldsymbol{V}_{\text{GS}} - \boldsymbol{V}_{\text{T}} \right) \! \boldsymbol{V}_{\text{DS}}$$

$$R_{PD} = \frac{V_{DS}}{I_{D}} = \frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD} - V_{Tn})}$$

$$R_{PU} = \frac{V_{DS}}{I_{D}} = \frac{L_{2}}{\mu_{p}C_{OX}W_{2}(V_{DD} + V_{Tp})}$$

$$\boldsymbol{C}_{\text{IN}} = \boldsymbol{C}_{\text{OX}} \big(\boldsymbol{W}_{\!1} \boldsymbol{L}_{\!1} + \boldsymbol{W}_{\!2} \boldsymbol{L}_{\!2} \big)$$

(Review from earlier discussions)

$$\boldsymbol{R}_{PD} = \frac{\boldsymbol{L}_{1}}{\boldsymbol{\mu}_{n}\boldsymbol{C}_{o\boldsymbol{X}}\boldsymbol{W}_{1}\!\left(\boldsymbol{V}_{DD} - \boldsymbol{V}_{Tn}\right)}$$

$$\boldsymbol{R}_{\text{PU}} = \frac{\boldsymbol{L}_{\text{2}}}{\boldsymbol{\mu}_{\text{p}}\boldsymbol{C}_{\text{OX}}\boldsymbol{W}_{\text{2}}\!\left(\boldsymbol{V}_{\text{DD}} + \boldsymbol{V}_{\text{Tp}}\right)}$$

$$\mathbf{C}_{\mathsf{IN}} = \mathbf{C}_{\mathsf{OX}} \big(\mathbf{W}_{\mathsf{1}} \mathbf{L}_{\mathsf{1}} + \mathbf{W}_{\mathsf{2}} \mathbf{L}_{\mathsf{2}} \big)$$

Example: Minimum-sized M₁ and M₂

 $\begin{array}{l} \text{If } u_{n}C_{OX} = 100 \mu \text{AV}^{-2}, \ C_{OX} = 4 \text{ fF}\mu^{-2}, \ V_{Tn} = V_{DD}/5, \ V_{TP} = -V_{DD}/5, \ \mu_{n}/\mu_{p} = 3, \ L_{1} = W_{1} = L_{MIN}, \ L_{2} = W_{2} = L_{MIN}, \ L_{MIN} = 0.5 \mu \text{ and } V_{DD} = 5 V \end{array} \\ \begin{array}{l} \text{(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)} \end{array}$

$$R_{PD} = \frac{1}{10^{-4} \cdot 0.8 V_{DD}} = 2.5 K\Omega$$

$$C_{IN} = 4 \cdot 10^{-15} \cdot 2 L_{MIN}^2 = 2 fF$$

$$R_{PU} = \frac{1}{10^{-4} \cdot \frac{1}{2} \cdot 0.8 V_{DD}} = 7.5 K\Omega$$

(Review from earlier discussions)

In typical process with Minimum-sized M₁ and M₂:

$$R_{PD} \cong 2.5 K\Omega$$

$$R_{PU} \cong 3R_{PD} = 7.5K\Omega$$

 $C_{IN} \cong 2fF$

$$C_{IN} \cong 2fF$$

(Review from earlier discussions)

In typical process with Minimum-sized M₁ and M₂:

How long does it take for a signal to propagate from x to y?

(Review from earlier discussions)

Consider: For HL output transition, C_L charged to V_{DD} Ideally: V_{DD} t=0 V_{OUT} V_{DD} t=0

(Review from earlier discussions)

For HL output transition, C_L charged to V_{DD}

What is the transition time t_{HL} ?

(Review from earlier discussions)

(Review from earlier discussions)

$$\mathbf{t}_1 = \mathbf{R}_{PD} \mathbf{C}_{L}$$

If V_{TRIP} is close to $V_{DD}/2$, t_{HL} is close to t_1

(Review from earlier discussions)

For V_{TRIP} close to $V_{DD}/2$

(Review from earlier discussions)

LH = 1.600L = 1.617 211 1.666

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Note: LH transition is much slower than HL transition

Defn: The Propagation Delay of a gate is defined to be the sum of t_{HL} and t_{LH} , that is, $t_{PROP} = t_{HL} + t_{LH}$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked at

For basic two-inverter cascade <u>with minimum-sized devices</u> in static 0.5um CMOS logic driving an identical device

X
$$t_{PROP} = t_{HL} + t_{LH} \cong 20p \text{ sec}$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

$$R_{PD} = \frac{L_1}{\mu_n C_{ox} W_1 (V_{DD} - V_{Tn})} \qquad R_{PU} = \frac{L_2}{\mu_p C_{ox} W_2 (V_{DD} + V_{Tp})} \qquad \qquad C_{IN} = C_{ox} \big(W_1 L_1 + W_2 L_2 \big)$$

If $V_{Tn} = -V_{Tp} = V_{T}$ and if $C_L = C_{IN}$

$$t_{PROP} = C_{OX}(W_{1}L_{1} + W_{2}L_{2}) \left(\frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD} - V_{T})} + \frac{L_{2}}{\mu_{p}C_{OX}W_{2}(V_{DD} - V_{T})} \right)$$

If
$$L_{2} = L_{1} = L_{\min}$$
, $\mu_{n} = 3\mu_{p}$,

$$t_{PROP} = \frac{L_{\min}^2}{\mu_n (V_{DD} - V_T)} (W_1 + W_2) \left(\frac{1}{W_1} + \frac{3}{W_2} \right) = \frac{L_{\min}^2}{\mu_n (V_{DD} - V_T)} (4 + \frac{W_2}{W_1} + 3 \frac{W_1}{W_2})$$

Note speed is a function of device sizing!

Can device sizing be used to minimize t_{PROP}?

For
$$L_2 = L_1 = L_{\min}$$
, $\mu_n = 3\mu_p$,
$$t_{PROP} = \frac{L_{\min}^2}{\mu_n (V_{DD} - V_T)} (4 + \frac{W_2}{W_1} + 3\frac{W_1}{W_2})$$

Can device sizing be used to minimize t_{PROP}?

Assume W₁=W_{MIN}

$$\begin{split} \frac{\partial t_{\text{PROP}}}{\partial W_2} = & \left[\frac{L_{\text{min}}^2}{\mu_n \left(V_{\text{DD}} - V_{\text{TH}} \right)} \right] \left[\frac{1}{W_{\text{MIN}}} - 3 \frac{W_{\text{MIN}}}{W_2^2} \right] = 0 \\ \frac{1}{W_{\text{MIN}}} - 3 \frac{W_{\text{MIN}}}{W_2^2} = 0 \end{split}$$

$$W_{2} = \sqrt{3}W_{MIN}$$

$$t_{PROP} = \frac{L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})}(4 + 2\sqrt{3}) \cong \frac{L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})}(7.5)$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L \left(R_{PU} + R_{PD} \right)$$
 If $V_{Tn} = -V_{Tn} = V_T$ and $C_L = C_{LN}$

For min size observe:

$$t_{PROP} = C_{OX}(W_{1}L_{1} + W_{2}L_{2}) \left(\frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD} - V_{T})} + \frac{L_{2}}{\mu_{p}C_{OX}W_{2}(V_{DD} - V_{T})} \right)$$

$$If L_{2} = L_{1} = L_{min}, W_{1} = W_{2} = W_{min}, \ \mu_{n} = 3\mu_{p},$$

$$t_{PROP} = \frac{L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})} (W_{1} + W_{2}) \left(\frac{1}{W_{1}} + \frac{3}{W_{2}} \right) = \frac{L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})} (2W_{min}) \left(\frac{1}{W_{min}} + \frac{3}{W_{min}} \right)$$

For min size:

$$W_{2}=W_{1}=W_{min}$$

$$t_{PROP}=\frac{8L_{min}^{2}}{\mu_{1}(V_{DD}-V_{T})}$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

If
$$V_{Tn} = -V_{Tp} = V_T$$
 and $C_L = C_{IN}$

For equal rise/fall (with $W_1=W_{min}$):

$$t_{PROP} = C_{OX}(W_{1}L_{1} + W_{2}L_{2}) \left(\frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD} - V_{T})} + \frac{L_{2}}{\mu_{p}C_{OX}W_{2}(V_{DD} - V_{T})} \right)$$

If
$$L_2 = L_1 = L_{\min}$$
, $W_1 = W_{\min}$, $\mu_n = 3\mu_p$,

$$t_{PROP} = \frac{L_{min}^{2}}{\mu_{1}(V_{DP} - V_{1})} (W_{1} + W_{2}) \left(\frac{1}{W_{1}} + \frac{3}{W_{2}} \right) \qquad \qquad W_{2} = 3W_{1}$$

For equal rise/fall:

$$W_{2} = 3W_{1}$$

$$t_{PROP} = \frac{8L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})}$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

Summary:

If
$$V_{Tn} = -V_{Tp} = V_T$$
 and $C_L = C_{IN}$ and $L_2 = L_1 = L_{min}$, $\mu_n = 3\mu_p$,

For min size: For equal rise/fall: For min delay:
$$W_{2} = W_{1} = W_{min} \qquad W_{2} = 3W_{1} \qquad W_{2} = \sqrt{3}W_{1}$$

$$t_{PROP} = \frac{8L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{8L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{(4 + 2\sqrt{3})L_{min}^{2}}{\mu_{n}(V_{DD} - V_{T})} \qquad (4 + 2\sqrt{3}) \cong 7.5$$

- Propagation Delay About the Same for 3 Sizing Strategies
- And for these sizing strategies all are near that of minimum delay!
- Have now introduced 4 device sizing strategies (3 based upon propagation delay and one to set V_{TRIP}=V_{DD}/2)

Will return to the issue of device sizing later

The propagation delay through k levels of logic is approximately the sum of the individual propagation delays in the same path

Example:

$$t_{\text{HL}} = t_{\text{HL4}} + t_{\text{LH3}} + t_{\text{HL2}} + t_{\text{LH1}}$$

$$t_{LH}=t_{LH4}+t_{HL3}+t_{LH2}+t_{HL1}$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}) + (t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1})$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL4}) + (t_{LH3} + t_{HL3}) + (t_{LH2} + t_{HL2}) + (t_{LH1} + t_{HL1})$$

$$t_{PROP} = t_{PROP4} + t_{PROP3} + t_{PROP2} + t_{PROP1}$$

Propagation through k levels of logic

$$t_{HL} \cong t_{HLk} + t_{LH(k-1)} + t_{HL(k-2)} + \cdots + t_{XY1}$$

$$t_{LH} \cong t_{LHk} + t_{HL(k-1)} + t_{LH(k-2)} + \cdots + t_{YX1}$$

where X=H and Y=L if k odd and X=L and Y=h if k even

$$t_{PROP} = \sum_{i=1}^{k} t_{PROPk}$$

Will return to propagation delay after we discuss device sizing in more detail

Stay Safe and Stay Healthy!

End of Lecture 39